Control theorist John Doyle has a simple plan to make the internet faster — just make the traffic measurements better. Doyle studies what makes free-scale networks robust:
“The reason the bacterium works so well, Doyle finds, is that it is organized in much the same way as the Internet. Both the Internet and E. coli are conceptually organized like a bow tie, with a broad fan of incoming material flowing into a central knot and then flowing into another broad fan of outgoing material. On the Internet, the incoming fan is made up of data from a huge range of sources — e-mail, YouTube videos, Skype phone calls, and the like. In E. coli, the incoming fan is made up of the many sorts of food it eats. As information and food move into their respective bow ties, they get homogenized: E. coli breaks down its food into a few building blocks, while the Internet breaks down its motley incoming data streams into streams of standardized packets.”
“Today computers sense Internet congestion by noticing how many packets they lose. That’s like trying to drive down a highway by just looking at what’s 20 feet ahead of you, constantly accelerating and then slamming on the brakes as soon as you see something.”
“Doyle and his coworkers enable computers to use more information about traffic flow, noting how long it takes for their packets to get to their destination. The less traffic, the shorter the time, and with these traffic reports on hand, their computers make much smarter decisions. The result is a string of victories for high-speed Internet communication competitions. In the last face-off in 2006, they managed to send 17 gigabits — about a full-length movie’s worth — each second across the Internet.”